
Scheme III^a

622

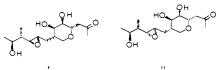
^a Reagents: (a) 4:1 dioxane-1 N HCl, (v/v) room temperature, 6 h, 97%; (b) acetone, 0.5% H₂SO₄, molecular sieve 4 Å, room temperature, 20 min, 77%; (c) 1.1 equiv of TsCl, Et₃N, DMAP, CH₂Cl₂, room temperature, 1,5 h, 96%; (d) KCN, HMPT, crown ether (18-crown-6), room temperature, 12 h, 94.5%; (e) AlMe₃, Ni(acac)₂, PhMe, 0 °C, 6 h, then (a), 84%.

afforded the expected product 15 in 43% yield, This reaction is characterized by the regiospecificity of the nucleophilic ring opening of the epoxide, the regiospecific formation, from the allylic Grignard reagent, of the "normal", i.e., "nonrearranged" addition product, and finally the formation of a E double bond,¹² these last two features being critical and far from obvious.¹³ Acid hydrolysis of 15 gave the polyol 16, which then converted into the acetonide derivative 17¹⁴ (Scheme III).

The use of the costly chiral chloride 14 can be averted by that of the racemic form, prepared in three steps from the easily available alcohol 21,^{13a,15} taking up an idea introduced by Raucher¹⁶ (Scheme IV). Entry of the racemic chloride 14 into the previously described methodology finally gave two stereoisomers (ratio 1:1) separable on a silica gel column (3:1 toluene-acetone, v/v); 17, fully identical with the compound previously prepared, and 24.

Selective tosylation of 17 afforded 18; treatment with potassium cyanide produced 19. After extensive experimentation, the ketone 20 was obtained in 84% yield upon treatment of the cyanide 19 with trimethylaluminum in the presence of $Ni(acac)_2$,¹⁷ followed by acid hydrolysis.¹⁸ Elongation of the right side chain was essentially performed along lines already described.^{4,19} Silylation of the ketone 20 (BSA,CH₃CN, room temperature, 12 h), reaction with the anion of ethyl diethylphosphonoacetate (dioxane, room

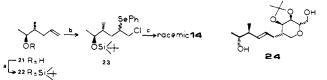
(12) Tiny amounts of Z isomer (E/Z > 25) were easily removed by silica gel chromatography in the subsequent steps.


(13) For discussions on these features, see: (a) Felkin, H.; Frajerman, C.; Roussi, G. Bull. Soc. Chim. Fr. 1970, 3704. (b) Glaze, W. H.; Duncan, D. P.; Berry, D. J. J. Org. Chem. 1977, 42, 694. (c) Linstrumelle, G.; Lorne, R.; Dang, H. P. Tetrahedron Lett. 1978, 4069. For a recent discussion on the η^1 structure (" σ compound") of allylic Grignard compounds, see: Schlosser, M.; Stähle, M. Angew. Chem., Int. Ed. Engl. 1980, 487.

(14) The trans geometry of the C-10, C-11 double bond was clearly established³ from the ¹H NMR spectrum of the ketal 17 in $CDCl_3$ after addition of 1 equiv of Eu(fod)₃, which induces a sufficient separation in the chemical shifts between H-10 and H-11 to enable measurement of the coupling constant, $J_{10,11} = 16$ Hz.

(15) cis-Epoxybutane was prepared according to Pasto and Lumbo: Pasto,
D. J.; Lumbo, C. C. J. Org. Chem. 1965, 30, 1271.
(16) Raucher, S. Tetrahedron Lett. 1977, 3909.
(17) Bagnell, L.; Jeffery, E. A.; Meisters, A.; Mole, T. Aust. J. Chem.

1974, 27, 2577.


(18) Epoxidation of 20 with MCPBA (CH₂Cl₂, room temperature, 1.5 h) afforded a product (80% yield) that was chromatographically identical (TLC in various solvents) with the ketone obtained from pseudomonic acid $A.^{19}$ However, as shown by GLC, this was a mixture of i and ii in a ratio of about 2:3. This ratio was confirmed by 13 C NMR, where all the signals belonging to the synthetic sample i were fully identical with those of the sample derived from the natural antibiotic. After GLC (capillary column, CP SIL 5, 25 m \times 0.25 mm, 210 °C) the mass spectra of both TMS synthetic and provided samples were identical. Epoxidation with TBHP-VO(acac)₂²⁰ did not significantly enhance production of the isomer i (1:1 ratio).

(19) Clayton, J. P.; Luk, K.; Rogers, N. H. J. Chem. Soc., Perkin Trans. 1 1979, 308.

(20) Sharpless, K. P.; Verhoeven, T. R. Aldrichimica Acta 1979, 12, 63.

Scheme IVa

^a Reagents: (a) TBDMSCl, imidazole, DMF, room temperature, 30 min, 96%; (b) PhSeCl, CCl₄, 0 °C, 15 min; (c) H_2O_2 , pyridine, 0 °C, 20 min, then room temperature, 3 h, 72% from 22.

temperature, 12 h), and desilylation (4:1 dioxane-1 NHCl, v/v, room temperature, 10 min) gave predominantly ethyl monate C $(1e^{21}, 82, 4\%)$, easily separated from the Z isomer (12.2%) yield on a silica gel column (13:1 CH₂Cl₂-MeOH, v/v). Saponification of the ester 1e (aqueous 1 N NaOH, 30 equiv, room temperature, 1 h, then 65 °C, 5 min) and treatment of the isolated sodium salt with methyl 9-iodononanoate²² (DMF, room temperature, 3 h) produced methyl pseudomonate C (1d), identical with the natural substance isolated by the Beecham group (TLC in various solvents, optical rotation, ¹H and ¹³C NMR).

Since methyl pseudomonate C can be converted to pseudomonic acids A^{23} and C,⁵ the present work also constitutes formal total synthesis of pseudomonic acids A and C.

Acknowledgment. We thank the Centre National de la Recherche Scientifique for financial support (ERA 739), Dr. G. Lukacs and G. Berenger for ¹³C NMR data, Nermag for GLC-MS, and Dr. N. H. Rogers for supplying various samples.

Supplementary Material Available: Spectral information and physical constants for key substances (6 pages). Ordering information is given on any current masthead page.

Vinylcyclopropene Triplet Rearrangement Mechanisms: Mechanistic and Exploratory Organic Photochemistry^{1,2}

Howard E. Zimmerman* and Steven A. Fleming

Department of Chemistry, University of Wisconsin Madison, Wisconsin 53706 Received October 18, 1982

In previous studies on vinylcyclopropene photochemistry considerable attention has been focused on the rearrangements deriving from the triplet excited state.³⁻⁶ We now have evidence excluding two especially reasonable reaction mechanisms and establishing a mechanism previously thought to have only minor significance. This single mechanism accounts for all of the known triplet cyclopropene to cyclopentadiene rearrangements.

Thus, our earlier work^{3,5,6} considered several triplet mechanisms outlined in Scheme I. Mechanism B involved a triplet three ring opening to afford a carbene which then rearranged to cyclo-

(4) (a) Padwa, A.; Blacklock, T. J.; Getman, D.; Hatanake, N.; Loza, R. J. Org. Chem. 1978, 43, 1481-1492. (b) For a recent publication giving further references note: Padwa, A.; Blacklock, T. J.; Loza, R. Ibid. 1982, 47, 3712-3721.

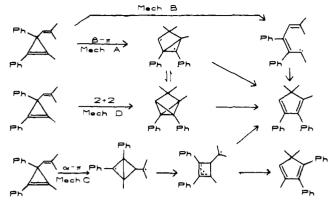
(5) Zimmerman, H. E.; Hovey, M. C. J. Org. Chem. 1979, 44, 2331-2345. (6) Zimmerman, H. E.; Kreil, D. J. J. Org. Chem. 1982, 47, 2060-2075.

0002-7863/83/1505-0622\$01.50/0 © 1983 American Chemical Society

⁽²¹⁾ Identical with a sample provided by the Beecham group.

⁽²²⁾ Methyl 9-iodononanoate was prepared from the monomethyl ester of azelaic acid (a, SOCl₂; b, NaBH₄, dioxane; c, NIS, PPh₃, CH₂Cl₂).
 (23) Kozikowski, A. P.; Schmiesing, R. J.; Sorgi, K. L. Tetrahedron Lett.

^{1981. 22. 2059.}


⁽²⁴⁾ Pougny, J.-R.; Sinaÿ, P. J. Chem. Res., Miniprint 1982, 0186.

⁽¹⁾ This is Paper 138 of our photochemical series.

^{(2) (}a) For Paper 137 note: Zimmerman, H. E. Chimia 1982, 36, 423–428. (b) For Paper 136 see: Zimmerman, H. E. Acc. Chem. Res. 1982, 15, 312-317

^{(3) (}a) Zimmerman, H. E.; Aasen, S. J. Am. Chem. Soc. 1977, 99, 2342-2344. (b) Zimmerman, H. E.; Aasen, S. M. J. Org. Chem. 1978, 43, 1493-1506

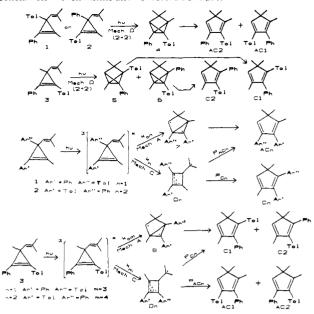
Scheme I. Mechanistic Alternatives for Triplet Cyclopropene Rearrangement

pentadiene product. This mechanism for the triplet^{5,6} was excluded although it was considered possible for the singlet.³⁻⁷ A preferred alternative, mechanism A, involved vinyl-vinyl bridging to afford a housane diradical and then product. Interestingly, mechanisms A and B are structurally equivalent.

The reversible closing of the housane diradical to afford a tricyclic intermediate seemed possible as well. Such a closing is tantamount to mechanism D, which involved an initial 2 + 2 cycloaddition with possible opening to the same diradical but, in any case, proceeding onward to cyclopentadiene product (note Scheme I).

A further mechanism, termed "C", appeared to intervene to some extent. This, too, is included in Scheme I. In our present study we investigated the triplet photochemistry of methyl-phenyl-p-tolyl-3-isobutenylcyclopropenes 1-3 (eq 1-3).

The first observation was that p-(dimethylamino)benzophenone-sensitized irradiation of the 3-tolylcyclopropene 1 led only to the 2-phenyl-3-p-tolylcyclopentadiene (AC1) and the 1-ptolyl-2-phenylcyclopentadiene (C1) (note eq 1).⁸


--

Similar sensitized irradiation of the 3-phenylcyclopropene 2 led, again, to just two products, 2-p-tolyl-3-phenylcyclopentadiene (AC2) and 1-phenyl-2-p-tolylcyclopentadiene (C2) as in eq $2.^{8}$

The designation AC1 refers to a product that derives from either mechanism A or mechanism C starting with reactant 1. C1 is a product derived from reactant 1 only by mechanism C. Similarly AC2 can be arrived at from cyclopropene 2 by mechanisms A and C while C2 comes from 2 only via mechanism C.

Finally, sensitized photolysis of the 3-methylcyclopropene 3 led to all four photoproducts, AC1, C1, AC2, and C2.⁸

From these results a number of conclusions may be drawn. First, the triplet rearrangement cannot proceed via a tricyclic intermediate as 4 as in mechanism D or from touching of oddelectron centers of the mechanism A housane diradical. The Scheme II, Mechanisms and Predicted Products

expected regioselectivity of cycloaddition of the 3-*p*-tolylcyclopropene 1 and the 3-phenylcyclopropene 2 would lead to the tricyclic intermediate 4, and thus both 1 and 2 would give the same products, which is not the case (see Scheme II). The reverse regioselectivity in a 2 + 2 cycloaddition would lead to unobserved products.

Starting with the 3-methylcyclopropene 3 a 2 + 2 cycloaddition predicts the two observed products C1 and C2 but would not account for AC1 and AC2, which are also formed.

The second conclusion is that mechanism A alone cannot be operative. From cyclopropenes 1 and 2 one cannot obtain C1 or C2, the observed products (note Scheme II).

Our third conclusion is that mechanism C can account for all of the observed photoproducts. This is seen in Scheme II.

Our fourth point is that mechanism C must account for all of the rearrangement. This derives from consideration of the observed product ratios. Thus, in the reaction of the 3-tolylcyclopropene triplet ${}^{3}[1^{*}]$, k_{1} is the rate of formation of diradical D1, P_{C1} and P_{AC1} are the respective probabilities of formation of C1 and AC1 via D1, and k_{o1} is the rate of formation of AC1 by other routes such as mechanism A. Then eq 4 results. Similarly, eq 5 is obtained from consideration of the processes in eq 2.

$$(C1/AC1)_{run 1} = (k_1 P_{C1}) / (k_1 P_{AC1} + k_{o1})$$
(4)

$$(C2/AC2)_{run 2} = (k_2 P_{C2})/(k_2 P_{AC2} + k_{o2})$$
(5)

$$(C1/AC1)_{run 3} = (k_3 P_{C1} + k_{o3})/(k_3 P_{AC1})$$
(6)

$$C2/AC2)_{\text{run 3}} = (k_4 P_{C2} + k_{o4})/(k_4 P_{AC2})$$
(7)

Analogously, for the processes in eq 3 we can arrive at eq 6 and 7. This means that limits are set on the relative rates for processes (i.e., corresponding to the k_0 's) other than mechanism C.

However, experimentally the ratio of C1 to AC1 was observed to be the same (0.89, 0.90) in runs starting with 1 and 3. This means eq 4 and 6 require the k_0 's to be zero. Similarly, the same ratio (0.90, 0.90) of C2 to AC2 was found in runs 2 and 3 so that eq 5 and 7 require the k_0 's again to vanish. This means that only mechanism C is operating.⁹

Finally, we note that the type C diradical (e.g., D1 or D2) with Hückel overlap,¹⁰ the carbinyl orbital aiming inward and thus

⁽⁷⁾ Zimmerman, H. E.; Bunce, R. A. J. Org. Chem. 1982, 47, 3377-3396.
(8) The percentages in eq 1-3 are normalized to 100%. Mass balances ranged 95-99%, and NMR analysis indicated absence of further products.

⁽⁹⁾ Repetition of our previous study⁵ reveals that adventitious oxygen quenching led to a product ratio reflecting triplet quenching and singlet reactivity. With rigorous exclusion of oxygen the diphenyl analogues of the present study give the same ratio from 2,3-diphenyl-1-methyl- and 1,2-diphenyl-3-methyl-3-isobutenylcyclopropenes.

being cyclobutadienoid, affords a bifunnel for decay^{2b,11,12} to S_o diradical. This should then adopt a crosswise p orbital orientation of a Möbius system which is ground-state preferred and leads onward to product.

Acknowledgment. Support of this research by NIH Grant GM07487 and the National Science Foundation is gratefully acknowledged. Mechanistic aspects were supported by NSF while exploration of the synthetic aspects were supported by NIH.

(10) (a) Zimmerman, H. E. J. Am. Chem. Soc. **1966**, 88, 1564–1565. (b) Zimmerman, H. E. Tetrahedron **1982**, 38, 753–758. (c) Zimmerman, H. E. Acc. Chem. Res. **1971**, **4**, 272–280.

(11) (a) See: Zimmerman, H. E. Top. Curr. Chem. 1982, 100, 45-73. (b) Zimmerman, H. E. J. Am. Chem. Soc. 1966, 88, 1566-1567.

(12) Michl, J. Mol. Photochem. 1972, 4, 243-255.

Total Synthesis of Oinghaosu

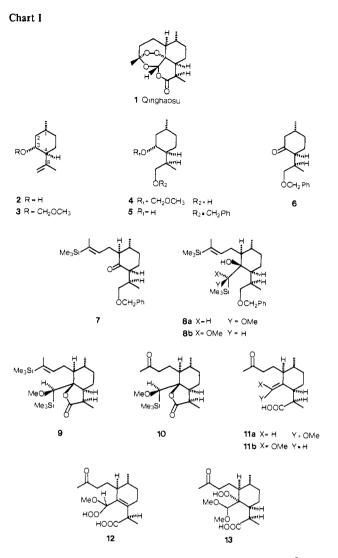
G. Schmid and W. Hofheinz*

Department of Pharmaceutical Research F, Hoffmann-La Roche and Co, CH-4002-Basel, Switzerland Received September 15, 1982

Since ancient times Artemisia annua L. has been used as a traditional Chinese herbal medicine known as Qinghao for treating fever. The effective constituent was isolated by Chinese investigators in 1972 and shown to be the sesquiterpene lactone 1,¹ named qinghaosu (Chart I). It was found to be a potent plasmodicidal agent, and extensive clinical trials in China have revealed that 1 has considerable promise for the treatment of drug-resistant malaria.² The combination of an outstanding biological activity and an intriguing chemical structure having no precedent in the field of antimalarials incited us to develop a synthetic route toward this novel natural product.

(-)-Isopulegol (2) was converted into methoxymethyl ether 3^3 $(ClCH_2OCH_3, PhN(CH_3)_2, CH_2Cl_2, room temperature)$, which was hydroborated $(B_2H_6, THF, 0 \ ^{\circ}C)$ to give after oxidative workup with alkaline hydrogen peroxide the 8R alcohol 4 in 80%yield along with 10% of the 8S epimer. This transformation was modeled after the stereoselective hydroboration of 2.4. After benzylation of the primary hydroxyl group (PhCH₂Br, KH, 4:1 THF:DMF, 0 °C) the methoxymethyl ether was cleaved (CH₃OH, HCl, 40 °C, 5 h) and the resulting alcohol 5 oxidized (PCC,⁵ CH_2Cl_2 , room temperature) to the (benzyloxy)menthone 6. The overall yield for the conversion of (-)-isopulegol (2) into 6 was 58%.

Kinetic deprotonation of 6 (LDA, THF, 0 °C) and treatment of the resulting enolate with (E)-(3-iodo-1-methyl-1-propenyl)trimethylsilane⁶ provided a 6;1 mixture of epimeric alkylation products from which the major isomer 7^7 was isolated in 62% yield.


When ketone 7 was added to 1 equiv of lithium methoxy(tri-methylsilyl)methylide⁸ (THF, -78 °C), two diastereomeric alcohols, 8a and 8b, were obtained in a 1:1 ratio and almost quantitative yield. Since large nucleophiles are known to attack

(1) Jing-Ming, Liu; Mu-Yun, Ni; Yu-Fen, Fan; You-You, Tu; Zhao-Hua, Wu; Yu-Lin, Wu; Wei-Shan, Chou Acta Chim. Sinica 1979, 37, 129-143.

(5) Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 2647–2650.
 (6) (a) Stork, G.; Jung, M. E. J. Am. Chem. Soc. 1974, 96, 3682–3684.
 (b) Stork, G.; Jung, M. E.; Colvin, E.; Noel, Y. Ibid. 1974, 96, 3684–3686.

(c) Gauley, R. E. Synthesis 1976, 792.

(8) Magnus, P. D.; Roy, G. J. Chem. Soc., Chem. Commun. 1979, 822-823.

preferentially from the equatorial side of cyclohexanones,⁹ both 8a and 8b must have the hydroxyl group in the axial position, By use of a 10-fold excess of the reagent the ratio of 8a to 8b was shifted to 8:1, and 8a could be isolated in 89% yield. This stereoselectivity is the result of a kinetic resolution of the racemic organolithium reagent by the chiral ketone. At this point of the synthesis it was not possible to establish unambiguously the configuration of the newly formed exocyclic asymmetric center of 8a and 8b, However, the assignment of configuration 8a to the major isomer followed from the result of the subsequent transformations.

Compound 8a was debenzylated (Li, NH_3) and the resulting alcohol oxidized (excess PCC, ⁵ CH₂Cl₂, 15 h) to lactone 9 in $75\overline{\%}$ vield. Conversion of the vinylsilane group to a ketone⁶ (m-CPBA, CH₂Cl₂; TFA, CH₂Cl₂, 0 °C, 3 min) was achieved in 72% yield. When the resulting ketone 10 was reacted with fluoride ion (n-Bu₄NF, THF, room temperature, 2 h), smooth desilylation occurred with simultaneous generation of the enol ether and carboxylic acid functions of **11a** in 95% yield. The same reaction sequence applied to isomer 8b produced selectively enol ether 11b with opposite configuration. The complementary formation of 11a and 11b is convincing evidence that the fluoride ion induced β elimination is stereospecific. A synchronous antiperiplanar process as in the acid-catalyzed E2 β elimination of β -(hydroxyalkyl)silanes¹⁰ seems most likely.

When 11a was reacted with ${}^{1}O_{2}$ (methylene blue, CH₂Cl₂, room temperature), an ene reaction led to hydroperoxide 12 isolated

^{(2) (}a) Qinghaosu antimalarial coordinating research group, Chinese Med. J. 1979, 92, 811-816. (b) Bruce-Chwatt, L. J. Brit. Med. J. 1982, 284, 767-768.

⁽³⁾ Reaction products were separated and purified by column chromatography; all compounds reported were homogeneous by TLC and showed ¹H NMR, IR, and mass spectra consistent with the assigned structures. Selected

spectroscopic and physical data are provided as supplementary material. (4) Schulte-Elte, K. H.; Ohloff, G. Helv. Chim. Acta 1967, 50, 153-165.

⁽⁷⁾ The stereochemistry of 7, was unambiguously established by ¹H NMR analysis of the alcohols obtained after LiAlH₄ reduction.

⁽⁹⁾ Ashby, E. C.; Laemmle, J. T. Chem. Rev. 1975, 75, 521-546.

⁽¹⁰⁾ Hudrlik, P. F.; Rona, R. J.; Misra, R. N.; Withers, G. P. J. Am. Chem. Soc. 1977, 99, 1993-1996.